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Abstract

Prediction of particulate matter with diameter less than
2.5 µm (PM2.5) is an important issue in control and
reduction of pollutants in the air. In this report, I dis-
cuss three different models to deal with this PM2.5 pre-
diction problem, including basic Autoregressive Mov-
ing Average (ARMA) Model, Stochastic Volatility (SV)
Model and Stock-Watson (SW) Model. Furthermore, I
design an innovative model combining SW model with
Time Series Neural Network. Finally, I conduct four
experiments to compare and analyze the performances
of above-mentioned models. The results show that this
newly-designed model provide more accurate predic-
tions of PM2.5 concentration levels for the next six
hours.

1 Introduction
Particulate matter (PM) is the term used for a mixture of
solid particles and liquid droplets found in the air. In partic-
ular, fine particles with diameter less than 2.5 µm are called
PM2.5. Prediction of PM2.5 is an important issue in control
and reduction of pollutants in the air. Predictive models for
PM2.5 vary from extremely simple to extremely complex,
but the ability to accurately forecast PM2.5 concentration in-
dex remains elusive.

In this report, I discuss my effort to solve this problem
using times series based data mining. I first adopt three dis-
tinctive models, including basic Autoregressive Moving Av-
erage (ARMA) Model, Stochastic Volatility (SV) Model and
Stock-Watson (SW) Model. Furthermore, I design a new
method combining SW model with Time Series Neural Net-
work, adding external meteorological information such as
temperature, pressure, humidity, windspeed and precipita-
tion rate. Finally, I conduct four experiments to compare and
analyze the performances of above-mentioned models, using
the dataset provided by the U.S. Department of State. The
results show that this newly-designed model provide more
accurate predictions of PM2.5 concentration levels for the
next six hours.

The rest of this report is structured as following: In sec-
tion 2, I give a thorough discussion of the dataset I used in
this project. In section 3, specific task goals are presented.
ARMA model, Stochastic Volatility Model, Stock-Watson
Model and Stock-Watson Model with External Information

are discussed in Section 4 - 7, respectively. Finally, I talk
about the future works and conclude this report in Section 8.

2 Dataset
The dataset I use in this project is the U.S. Department of
State air quality files [1], which contain PM2.5 in concentra-
tion unit µg/m3 from each post. Files include hourly data of
following several attributes – Site, Parameter, Dates(LST),
Year, Month, Day, Hour, Value, Unit, Duration, and QC
Name. Site is the city where the measurements were taken.
In this project, I only use four major cities in China, and their
detail locations are shown in Table 1. Value is the measure-
ment in concentration, and the value of missing data point
is listed as -999. QC Name is the quality control status of
the data; either valid or missing. Further explanations of this
raw dataset file can be viewed in [2].

Site Location Latitude and Longitude Degrees

Shanghai 31.21, 121.44
Beijing 39.95, 116.47

Guangzhou 23.12, 113.32
Chengdu 30.63, 104.07

Table 1: Geographic Coordinates for the locations of Four
Major Cities

From the raw dataset files, I notice that these data have
not been fully validated or quality assured, and thus they
should be considered preliminary. Before conducting any
further experiment, I first have a thorough look at the raw
dataset, finding the number and percentage of missing data
point. The missing data point means either the Value is -999
or the QC Name is labeled “Missing”. The results are shown
in Table 2. As you can see, the percentage of missing data
points of Guangzhou in Year 2014 is too high ( above 5 %),
and thus I switch to the dataset in Year 2013. Except for
Guangzhou, I use the latest dataset for analyzing all other
major cities, namely using the dataset in Year 2014.

For the sake of temporal continuity, I did not simply delete
those missing data. Instead, I use first-order interpolation
method to replace them, and conduct simple statistical anal-
ysis in original data set. Results are shown in Figure 1 as



PPPPPPPCity
Year 2012 2013 2014

Shanghai 279 173 (1.97%) 103 (1.17%)
Beijing 489 82 (0.94%) 99 (1.13%)
Chengdu 4370 1393 (15.9%) 285 (3.25%)
Guangzhou 2188 371 (4.23%) 645 (7.36%)

Table 2: Number of Missing Data Points of Four Major
Cities in Three Different Years

well as Table 3. Obviously, Beijing has the worst air condi-
tion among all four major cities in China, which is consis-
tence with our intuition.
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Figure 1: Boxplot of PM2.5 Concentration Index

XXXXXXXXXCity
Statistics Mean Standard Deviation Median

Shanghai 49.54 36.03 40
Beijing 97.95 93.83 72
Guangzhou 55.15 34.72 49
Chengdu 81.06 54.09 67

Table 3: Statistics of PM2.5 Concentration Index

Perhaps, you do not have an intuitive understanding of
what the PM2.5 concentration index means exactly. You can
find a basic Air Quality Guide for PM2.5 in [1]. Here, in Fig-
ure 2, I want to show you the PM2.5 concentration index of
different status in four major cites of China. As you can see,
the air qualities in over 50 days are labelled “Unhealthy for
Sensitive Group” in Beijing and there are another 50 days
are considered “Unhealthy” and “Very Unhealthy”. The sit-
uation better is Shanghai, but there are still about 20 days
with air qualities labelled “Unhealthy for Sensitive Group”.

These astonishing facts further strengthen the motivation of
analyzing PM2.5 concentration in China.
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Figure 2: PM2.5 of different status in four major cites of
China

3 Task Goals
As I do not have a specific task goal in the original version
of this project, I need to define them on my own. Actually,
good task goals serve not only the purpose of conducting
this project, but also decide whether this project is mean-
ingful at all. Good task goals should be both intuitive and
profound; they requires deep understandings of the whole
problem and point out the direction I will be working on.
In this project, I establish three different categories of task
goals, namely PM2.5 Trend Prediction, PM2.5 Value Pre-
diction, and PM2.5 Hidden Factors Prediction. They will
be discussed detailedly in following three subsections.

PM2.5 Trend Prediction
Given a sequence of historical PM2.5 data, we want to pre-
dict whether the following six hour’s PM2.5 concentration
indexes will increase, decrease or basically stay stable. This
is call PM2.5 Trend Prediction, which is the most basic task
goal of our project.

PM2.5 Value Prediction
Given a sequence of historical PM2.5 data, we want to pre-
dict the exact value of PM2.5 concentration indexes in next
one or several time units. This is an advanced version of
PM2.5 Trend Prediction problem. Besides, if we only predict
one time unit ahead, we call it One step ahead prediction,
or if we want to predict several time units ahead, we call it
Multiple steps ahead prediction. Obviously, the later one is a
more challenging problem and require more complex model
to solve it. Finally, we should pay attention to the usage of



“time unit”. The raw dataset provides hourly PM2.5 concen-
tration index, so intuitively the time unit could be “Hour”.
We can see aggregate these values and change the “time
unit” to be “Every Six Hour”, or simply “Day”. Here, in
this project, I DO NOT change the time unit, and keep using
“Hour” as the basic and single “time unit”, however, we can
modify this in future works, for some other specific prob-
lems.

PM2.5 Hidden Factors Prediction
Given a sequence of historical PM2.5 data, we want to eval-
uate and predict the hidden factors which generate or influ-
ence the observable PM2.5 concentration indexes. This is
called PM2.5 Hidden Factors Prediction, which is a higher
level of prediction because it not only shows us the facts
(observable PM2.5concentrationindexes ) on surface, but
also analyzes the reasons in deeper level, i.e. hidden factors.

4 Experiment I: ARMA Model
The first model I used to achieve the task goals in previous
section is Autoregressive Moving Average (ARMA) Model.
The fundamental assumption of the model is that the value
of the series at time t, Xt, linearly depends on its previous p
values (deterministic part) and on a random disturbance Z̃t

(stochastic part). We can write

Xt = �1Xt�1 + �2Xt�2 + · · ·+ �pXt�p + Z̃t,

where {�1,�2, · · · ,�p} are real constants called autore-

gressive (AR) coefficients. Z̃t is the disturbance at time t and
usually modeled as a zero-mean white noise process {Zt}
with variance �

2

Z̃t = Zt + ✓1Zt�1 + ✓2Zt�2 + · · ·+ ✓qZt�q.

where {✓1, ✓2, · · · , ✓q} are called moving average (MA) co-

efficients. Combining the previous two equations, we can get

Xt��1Xt�1�· · ·��pXt�p = Zt+✓1Zt�1+· · ·+✓qZt�q.

This defines a zero-mean autoregressive moving average

(ARMA) process of orders p and q, or ARMA(p, q). When
q = 0 only the AR part remains and ARMA model re-
duces to a pure autoregressive process of order p denoted
by AR(p). Similarly, if p = 0, we obtain a pure moving av-

erage process of order q, MA(q).
Before I apply this model to the PM2.5 values in Shanghai

of the first quarter in Year 2014. I first smooth the raw data
using moving average of every six hours, see Figure 3.

After that, I run the Time Series Toolbox in Mathemat-

ica [3] and work on the model selection part using AIC as
criterion. Results are shown in the table below:

You can see that the top four candidate models have very
similar performs in terms of AIC, and later consideration,
I pick ARMA(2,1) process and train a model based on it.
Results are shown in Table 5. Finally, I use this process to
estimate 3 days ahead PM2.5 concentration index for the pur-
pose of trend prediction and exhibit the results in Figure 4.

Figure 3: Smooth Data using Moving Average

Figure 4: Trend Prediction using ARMA model.



No Candidate AIC

1 AR(1) 14651.5
2 AR(2) 14651.9
3 ARMA(2,1) 14653.2
4 ARMA(1,1) 14654.6
5 MA(1) 19831.6

Table 4: Model Selection: Top 5 Candidates

Parameters Values

AR coefficient: �1 0.642
AR coefficient: �2 0.297
MA coefficient: ✓1 0.269

White noise Variance: �2 158.7

Table 5: ARMA(2,1) Model Results

The rightmost red curve in Figure 4 is the prediction trend
(as well as values). The grey area are the 5% ⇠ 95% confi-
dence interval. Although this simple model successfully pre-
dict the trend during the period of May 1st to May 3rd, the
confidence interval covers a huge area and thus tend to be
less useful. You can also observe this drawback in Table 5 –
the White noise Variance �

2 is extremely high. Besides, the
ARMA model inclines to give a conservative prediction, and
thus the forecast values looks like a straight line.

Through analysis of the poor performance of ARMA
model, we understand the importance of using a model with
“hidden states”. After making some further surveys, I resort
another two models – Stochastic Volatility Model and Stock-
Watson Model.

5 Experiment II: Stochastic Volatility Model
Stochastic Volatility (SV) Model [4][5][6] is a non-linear
state-space model. The intrinsic feature of the SV model is
that each observation yt is assumed to have its “own” con-
temporaneous variance e

ht . The SV model can thus be con-
veniently expressed in hierarchical form. In its center param-
eterization, it’s given through

yt | ht ⇠ N (0, exp (ht))

ht | ht+1, µ,�,�⌘ ⇠ N

�
µ+ �(ht�1 � µ),�2

⌘

�

h0 | µ,�,�⌘ ⇠ N

�
µ,�

2
⌘/(1� �

2)
�

where µ is the level of log-variance, � is the persistence of
log-variance, and �⌘ is the volatility of log-variance.

There are several important points we should notice in SV
model. First, the mean of observation sequence {Yt} should
be zero, as shown in former equation one. As a result, if
the raw dataset does not satisfy this restriction ( which is
the case in this project as the mean of PM2.5 values is non-
zero ), we should manually convert it into the sequence we
want. In order to achieve this, I first calculate the logarithm
of PM2.5 values, and then demean the difference of two con-
tinuous values. After this preprocessing step, We can get a
time series satisfy the requirements of SV model.

The second characteristic of SV model is the existence of
static parameters, namely µ, � and �⌘ . This is very different
from the Stock-Watson Model discussed in next section. In
order to make inference on these parameters, I resort to the
full Bayesian framework and utilizes Markov Chain Monte
Carlo (MCMC) samplers.

The level µ 2 R is equipped with the usual normal
prior µ ⇠ N(bµ, Bµ). I set bµ = 0 and Bµ = 100 for
non-informative prior. For the persistence parameter � 2
(�1, 1), I choose (�+ 1)/2 ⇠ B(a0, b0), implying

p(�) =
1

2B(a0, b0)

✓
1 + �

2

◆a0�1 ✓1� �

2

◆b0�1

where B(a0, b0) denotes the beta function, and I choose the
hyperparameters a0 = 20, b0 = 1.1. Finally, for the volatil-
ity of log-variance �⌘ 2 R+, we choose �

2
⌘ ⇠ B�⌘ ⇥ �

2
1 =

G(1/2, 1/2B�⌘ ). The hyperparameter B�⌘ is chosen to be
0.1, which is of minor influence in empirical applications.

The aggregated results including posterior distribution of
three parameters and the predicted volatility are shown in
Table 6 and Figure 5.

Parameter Mean sd 5% 95%

µ -3.69 0.173 -3.973 -3.41
� 0.92 0.021 0.888 0.95
�⌘ 0.37 0.049 0.088 0.21

Table 6: Posterior draws of hyperparameters

Estimated volatilities in percent (5% / 50% / 95% posterior quantiles)
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Figure 5: Result of SV model on PM2.5 dataset

Finally, we should notice that all hyperparameters, esti-
mated latent states and predicted volatility are in the “Hid-
den State Space”. Thus, SV model provides an excellent tool
to conduct hidden factors prediction, however, it’s not suit-
able for making PM2.5 Trend or Value Prediction. In future
work, I think I could use SV model to extract some latent
features of PM2.5 concentration index. For example, I can
use the predicted volatility as the measure of “aggressive-
ness” of one-step or multiple-steps prediction.



6 Experiment III: Stock-Watson Model
Stock-Waston (SW) Model is recently proposed in [7], and
its brief explanation can be found in Section 2.5.7 of [5]. It
is a time-varying random walk plus local level model.

⇡n = x1,n + "n, "n ⇠ N(0, exp(x2,n))

x1,n+1 = x1,n + ⌘n, ⌘n ⇠ N(0, exp(x3,n))

x2,n+1 = x2,n + !1,n, !1,n ⇠ N(0, 0.2)

x3,n+1 = x3,n + !2,n, !2,n ⇠ N(0, 0.2)

where x1,n in this project is the unobserved time-varying
mean of PM2.5 and xi,n for i = 2, 3 are unobserved log-
variances. Conditional on the log-variance x2,n and x3,n,
the remaining model is a linear, Gaussian state space model,
and thus it can then be calculated exactly by the Kalman
Filter.

There are two appealing characters of this model. First,
the introduction of x1,n enables the observation ⇡n to pos-
sess non-zero mean. Second, there are no static parameters
that need to estimated due to the special structure of this
model. We can fit this model using Rao-Blackwellized par-
ticle filter technique. I plot the one step ahead prediction in
Figure 6.
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Figure 6: One Step Ahead Prediction Using Stack-Watson
Model

When viewed in high level, this model seems to fit the
trend and values of PM2.5 concentration index. However,
there are several major drawbacks. First, this model requires
the true observation every time when it makes further pre-
diction, and thus it can only make accurate one-step ahead
prediction. Second, it presents sort of time-delay when mak-
ing prediction. Actually, if we observed this results in de-
tail, the average difference between true value and predicted
value is 12.7463, which is not good enough. Despite of all
these problems, Stock-Watson model is currently the most
promising off-the-shelf method and serves as the foundation
of an extended model discussed in the following section.

7 Experiment IV: Stock-Watson Model with
External Information

All above-mentioned models have a common problem, i.e.,
they failed to take consideration of external information.
When talking about PM2.5, people normally think of the
weather data. Based on this intuition, I combine the pre-
diction output by SW model with the external weather in-
formation. To be more specific, every time we get a output
from SW model, instead of using this value as the prediction
directly, I view it as a part of input features which also con-
tains the weather information such as temperature, pressure,
humidity, windspeed and precipitation rate. Our goal is to
output the final prediction based on the input feature vector.
This is a regression problem! In order to solve this problem,
I adopt a time series neural network with the architecture
shown in Figure 7.

Figure 7: Nonlinear Autoregressive with External Input
(NARX) architecture

Using the first 500 hourly PM2.5 concentration indexes
of Shanghai in Year 2012, I train this neural network with
10 hidden units and 2 units time delays. In addition, I adopt
the Bayesian Regularization in the training process to deal
with overfitting problem. Results are shown in Figure 8 and
Figure 9.
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Figure 8: Response Plot of (NARX) neural network

As you can see, the error in most of time stamps belongs
to range [�7,+8]. The MSE reduces to approximately 50,



when using this method.
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Figure 9: Error Histogram of (NARX) neural network

Finally, I will compare this method with another two
methods through solving multi-step prediction problems. I
train the models with first 500 hours day points and evaluate
its performance using six steps ahead prediction. As men-
tioned below, the original version SW model is not able to
make multi-step prediction, so I modify it by letting the next
“true” observation equal to the last prediction. Results are
shown in Figure 10.
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Figure 10: Predicted PM2.5 Values using Three Different
Methods

You can see the true value of PM2.5 is decreasing, while
the multiple steps ahead predictions using only SW model

remain basically the same. This is because SW model adjust
its predictions by comparing them with the true observation
values, however, in order to achieve multi-step prediction,
we let the “true” observation to be same with last prediction
and thus SW model loses its ability to recover from bad pre-
diction. The modified version of SW model overcomes this
problem by using external information, and achieves a better
performance.

8 Conclusion & Future Works
There are several places I can further improve in future.
First, I should clean my original dataset more carefully.
In this project, I simply adopt the first-order interpolation
method which only works when the number of missing data
in a row is not very high. However, after a more detailed
observation of raw dataset, I find sometimes there will be
over 30 continuous missing data. This phenomenon requires
more careful data pre-processing.

Second, I should put more effects on the latent variables.
These hidden factors not only serves as a way to improve
the prediction accuracy, which is basically this report fo-
cused on, but also should be considered as the fundamental
reasons leading to the PM2.5 concentration index trend. As
mentioned in “Experiment II: Stochastic Volatility Model”,
I could use the SV model as a method to extract hidden fea-
tures of observable PM2.5 values.

Finally, I should develop my own model to make PM2.5

concentration index prediction, based on this problem’s own
characteristics. In this report, I briefly talk about one sim-
ple modification of Stock-Watson Model and show its cor-
responding performance improvement. Through further an-
alyze on this problem and more discussion with TAs, I will
figure out a more suitable model to deal with it.
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