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Introduction

• Entity set expansion (ESE) aims to expand a small number of seed
entities into a larger set of entities that belong to the same semantic class 
• E.g.: {Illinois, California} à {Illinois, California, Florida, Arizona, …} 

• Entity Synonym discovery (ESD) intends to group all terms that refer to 
the same real-world entity into a synonym set (in short synset)
• E.g.: {America, USA}, {Illinois, IL, Land of Lincoln}, …

• Both tasks can benefit many entity-aware applications but previously they
are regarded as two orthogonal tasks and accomplished independently
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Introduction

• Entity set expansion and synonym discovery are tightly coupled
• One entity can be the synonym of another entity only if they both belong to 

the same semantic class → Set Expansion helps Synonym Discovery
• Knowing the class membership of one entity enables us to infer the class 

membership of all its synonyms → Synonym Discovery helps Set Expansion

• We develop SynSetExpan, a framework that jointly conducts two
tasks and enables them to mutually enhance each other
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Problem Formulation
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SynSetExpan Framework – Overview

• SynSetExpan is an iterative framework consisting of two models:
• Set Expansion Model which predicts whether an entity belongs to the class
• Synonym Discovery Model which predicts whether two entities are synonyms

• Before the main iteration, we learn a general synonym discovery model
• This synonym discovery model is NOT tailed for a target semantic class

• Within the iterative process, we enable two models to mutually
enhance each other ← one of our main contributions
• After the iterative process, we cluster entities into synsets
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• We learn an ensemble classifier based on T=50 independently trained
SVM classifiers with randomly sampled negative samples

Each entity is
represented
by a set of

embeddings



Synonym Discovery Model

• We learn an additive tree-based classifier
• We derive distant supervision from KB
• We manually define term pair features:

• String-level features and Semantic features
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SynSetExpan Framework – Motivation Cases

• Standalone set expansion model may miss infrequent long-tail entities
• Example: Starting from seed set {“Illinois”, “IL”, “Land of Lincoln”, “Texas”, “TX”},

we can only find state full names (e.g., “Florida”, “Arizona”) but miss all state
abbreviations (e.g., “FL”, “AZ”) and slogans (e.g., “America’s Dairyland”)

• Standalone synonym discovery model fixes feature weights for all classes
• Example: For semantic class US States, many synonyms come from simple prefix

(e.g., “Florida” → “FL”) and thus string-level features play a key role. For semantic
class NBA Players, however, most entities get their synonyms from nicknames
(e.g., “Michael Jordan” → “His Airness”) and thus we should emphasize more on
embedding-based semantics features
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SynSetExpan Framework – Iterative Process
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In each iteration, we start with Set Expansion Model



SynSetExpan Framework – Iterative Process
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We use set expansion results to generate
pseudo-labeled training data to fine-tune
our pre-trained synonym discovery model

We use synonym discovery model to enrich set expansion model’s original output results



Synonym-Enhanced Set Expansion (SE2)
Dataset Construction
• The first crowd-sourcing Synonym-Enhanced Set Expansion (SE2) dataset:
• A Wikipedia corpus of 1.9B tokens
• A vocabulary of 1.5M frequent noun phrases
• 60 semantic classes covering 6 different entity types
• 1200 seed queries (20 queries per semantic class)
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Experiments – Set Expansion (Settings)

• Datasets:
• Previous benchmark datasets Wiki and APR (Shen et al., 2017)
• Our constructed SE2 dataset

• Compared Methods:
• One-time ranking methods: EgoSet (Rong et al., 2016), SetExpander (Mamou et

al., 2018), CaSE (Yu et al., 2019)
• Iterative methods: SetExpan (Shen et al., 2017), MCTS (Yan et al., 2019),

SetCoExpan (Huang et al., 2020), CGExpan (Zhang et al., 2020)
• Our proposed methods: SynSetExpan, SynSetExpan-NoSYN

• Evaluation Metrics:
• MAP@{10, 20, 50}
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Experiments – Set Expansion (Overall Results)

• Overall SynSetExpan outperforms other baseline methods
• Adding synonym information helps
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Experiments – Set Expansion (Detailed Results)

• SynSetExpan outperforms its non-synonym version in most cases
• Improvements are more significant in the long-tail end
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Experiments – Synonym Discovery (Settings)

• Datasets:
• Previous benchmark PubMed dataset (Qu et al., 2017): 10,486 positive synonym

pairs and 193,162 negative synonym pairs
• Our proposed SE2 dataset: 3,067 positive pairs and 57,119 negative pairs

• Compared Methods:
• Previous methods: SVM, XGBoost-(stringOnly & embedOnly), DPE (Qu et al.,

2017), SynSetMine (Shen et al., 2019)
• Our proposed methods: SynSetExpan, SynSetExpan-NoFT,

• Evaluation Metrics:
• Threshold-free metrics: Average Precision (AP), Area Under the ROC Curve (AUC)
• Threshold-aware metric: F1 @ threshold = 0.5
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Experiments – Synonym Discovery (Overall Results)

• Overall SynSetExpan outperforms other baseline methods
• Using set expansion results for fine-tuning helps
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Experiments – Synonym Discovery (Case Studies)

• Entities in green are those entities discovered only by SynSetExpan
after the fine-tuning step
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Conclusions & Future Work

• Conclusions:
• Set expansion and synonym discovery are two tightly coupled tasks and they can

mutually enhance each other
• Our proposed SynSetExpan is effective for both tasks

• Future Work
• Integrate synonym enhancement idea with BERT-based ESE methods
• Multi-faceted set expansion
• Contextualized set expansion
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