Theoretical Analysis of A Sparse Sampling Algorithm
for Near-Optimal Planning in Large MDPs

Jiaming Shen
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL, 61801
js2@illinois.edu

Abstract

In this project report, we present detailed analyses of the sparse sampling algorithm
in [3]] for near-optimal planning in large Markov Decision Processes (MDPs). For
arbitrary MDP, this algorithm takes its simulator as input and performs online,
near-optimal planning with a per-state running time that has no dependence on the
number of states. As a result, this algorithm scales to large MDPs with possibly
infinite state spaces. We will focus on discussing the key ideas of this algorithm
and prove it indeed achieves both efficiency and near-optimality, simultaneously.
Furthermore, we show this algorithm is exponential in the horizon time, and such
exponential dependency is inevitable for under the setting of paper [3]. Finally, we
present some discussions on the implications of this algorithm and compare/relate
it to the (villain) Monto Carlo Tree Search algorithm.

1 Introduction

Reinforcement learning with Markov Decision Process (MDP) is a powerful framework for long-term
planning and learning under certainty. Traditionally, people consider planning in MDP as a task that
takes the MDP model as input and returns a good (ideally optimal) policy. When the number of states
N is very large and no further assumption on the MDP structure, planning under the above viewpoint
is clearly infeasible, as even reading the model input requires N2 time. As a result, planning in large
MDP with a possibly infinite number of states requires rethinking what planning means.

The authors of paper [3] take an alternative view of planning and treat it as a task that takes a
single state as input and outputs a single action to take from that state. In this online view, a
planning algorithm itself serves as a (stochastic) policy. Furthermore, they describe a sparse sampling
algorithm and prove it is near-optimal and has no dependency on the state space size. This algorithm
is exponential in the horizon time, and they prove such exponential dependency is inevitable under
their setting. The descriptions and proofs of this algorithm are the primary focuses of this report.

The remaining of this report is organized as follows. First, we formalize the problem setting and
describe all useful notations in Sect. (2)). Then, we present the algorithm and discuss its key ideas
and intuitions in Sect. (EI) After that, we provide all detailed proofs in Sect. @]) Finally, in Sect. @
we discuss the implications of this algorithm and conclude this report in Sect. (6).

2 Problem Setting

We begin with the formal definition of a MDP M and then define its corresponding generative model.

Definition 1. A Markov Decision Process M on a set of states S and with a set of actions A =
{a1,...,ay} consists of two components: (1) Transition probabilities P where Py,(s") specifies the

CS 598N]J Final Report

probability of transition to each state s' upon execution of action a from state s, and (2) Reward
distributions R where R, indicates the reward distribution for executing action a from state s.

In this paper, for simplicity, we assume all rewards are deterministic, that is, the reward distributions
have zero variance. Therefore, with a slight abuse of notation, we view R, as the mean of reward
distribution and executing a from s is always exactly R,. Finally, we assume rewards are bounded
in absolute value by R,

We define a stochastic policy to be a mapping 7 : S — A. This paper is primarily concerned with
discounted MDPs and thus we assume a discount factor 0 < « < 1 is given. We then define the
value function V™ for any policy 7:

V™(s) = E : 1

oo
i1
Y rils, ™
i=1

where r; is the rewards on the ith step of executing the policy 7 from starting state s. Because
|Rsal < Rimaz, We have [V7(s)| < Vinay Where Vg, = fmaz.

Following standard terminology, we also define the Q)-function for a given policy as:
Q" (s,a) = Rsa + YEgp,, () [V"(s')] . 2)

When the policy is implemented by a stochastic algorithm A, we use V4 and Q- to denote the
value function and @-function of the policy implemented by .A. We define the optimal value function
V*(s) = sup,V™(s) and optimal Q-function Q*(s,a) = sup,Q™(s,a). Finally, we define the
optimal policy 7* where 7*(s) = argmax,Q*(s,a) forall s € S.

When the state space size |S| of a MDP M is very large or even infinite, we can no longer specify its
transition probability or any policy 7 for this MDP explicitly. Instead, we give a generative model G
which possesses the ability to sample the behavior of M. As a result, the given MDP is simulative
rather than explicit.

Definition 2. A generative model G for a Markov Decision Process M is a randomized algorithm
that takes a state-action pair (s,a) as input, and returns R, and a state s', where s' is drawn
Sollowing the transition probabilities P, (-).

This generative model is a natural formalization of a “simulator” for an arbitrary MDP. Although
generative models provide less information than explicit tables of probabilities, they are often available
when explicit tables are not. Furthermore, generative models contain more information than a single
trajectory sampled from an exploration policy, and to some extent, enables explorations. Essentially,
generative models are “compact representations” of MDPs and we will show in the next section, with
the knowledge of a generative model, we can design a planning algorithm that is near optimal.

3 A Sparse Sampling Algorithm for Planning in Large MDP

Recall that in paper [3], we take an online view of planning in which a planning algorithm itself is
a simply a stochastic policy mapping a state s to an action a. In Fig. (I)), we describe a planning
algorithm A. One of main contributions of paper [3] is the following theorem.

Theorem 1. Given a generative model for any k-action MDP M, the planning algorithm A takes
as input any state s € S and any value € > 0, outputs an action, and satisfies the following
two conditions: (1) Near-optimality: The value function of the policy implemented by A satisfies
[VA(s) — V*(s)| < e forall s € S, and (2) Efficiency: The running time of A is O((kC)™),

where H = [log(AVimaez)], C = % (QHlong;/;iM + logR")L\W), A = (e(1 = 7)?)/4, and
Vinaz = Rmmr/(l - 7)'

We define the value H to be e-horizon time. First, we notice that although this algorithm A has
exponential dependency on H, it has no dependency on the state space size |.S| because both C' and
H are independent of |\S|. Second, although the algorithm A4 itself implements a stochastic policy, the
near-optimality condition is not defined probabilistically. The detailed proofs of Theorem|[I]is given
in the next section. We first present some high-level intuitions for the algorithm and its analysis.

Given an input state sg, the planning algorithm A aims to return a near-optimal action a. The key
idea is to sample the generative model from states in the “neighborhood” of sg. These samples form a

Function: EstimateQ(h,C,~,G,s)
Input: depth h, width C, discount v, generative model G, state s.
Output: A list (Q}(s,a1), Q5 (s,a2),...,Q%(s,ax)), of estimates of the Q* (s, a;:).

1. If h =0, return (0,...,0).

2. For each a € A, use G to generate C samples from the next-state distribution Pso(-). Let
S. be a set containing these C' next-states.

3. For each a € A and let our estimate of Q*(s,a) be

A R 1 s ~ I
Qi(s,0) = R(s,0) + 715 Y EstimateV(h—1,C,7,G,s). (5)

8'€8Sq

4. Return (Q}(s,a1), Q}(s,a2),...,Q5(s,ax)).

Function: EstimateV(h,C,+,G,s)
Input: depth h, width C, discount v, generative model G, state s.
Output: A number Vj; (s) that is an estimate of ¥} (s).

1. Let (Qh(s,a1),Q(s,a2), .., Q}(s,ax)) := EstimateQ(k, C,7, G, s).
2. Return ma.xaé{ah_,w%}{Q;l(s,a)}.
Function: Algorithm A(e, v, Rmaz, G, s0)

Input: tolerance ¢, discount 7, max reward Rmqz, generative model G, state sq.
Output: An action a.

1. Let the required horizon H and width C parameters be calculated as given as functions of
€, 7 and Rma: in Theoreml.

2. Let (Qk(s,a1), Q% (s,a2),...,Q%(5,ax)) == EstimateQ(H, C, 7, G, s0).

3. Return argmaxae{al‘_“,ak}{Qg (s,a)}.

Figure 1: A sample sampling algorithm for planning in large MDP. EstimateQ finds QZ EstimateV
finds V}*, and Algorithm .4 implements the planning algorithm. Credits to [3].

small “sub-MDP” M’ of M such that the optimal action in M’ from s is a near-optimal action in M.
The algorithm running time is essentially determined by the number of samples from the generative
model, and thus if we sample the generative model carefully (i.e., without causing dependency of
state space size), the final running time will also be independent of state space size.

The algorithm A starts from the input state sy and for each action a € A, it calls the generative model
C times to generate a set of C' next states denoted as .S,,. Totally £C samples are drawn here, where
k = |A|. Then, for each state s’ € U,e 4.5, the algorithm A repeats the above process and generates
another kC' samples. So till now totally O((kC)?) samples are drawn. By recursively conducting
this process H times, we will generate O((kC')"") samples which defines the “sub-MDP” M’. The
graphical structure of M’ is a directed tree in which each node is labeled by a state and each edge is
labeled with an action, as shown in Fig. . We consider M’ as an MDP in which sg is the start state
and taking an action from a node in the tree causes a transition to random child of that node with the
corresponding action label. Finally, we treat the leaf nodes as absorbing states. Under this view, we
can compute an optimal action for root s in M. Specifically, we assign zero values to leaf nodes as
our estimates of VO*, which are backed-up to compute estimates of Vl* for their parents, which are in
turn further backed-up to the root node to find an estimate of Vﬁ(so). The core of our later proofs is

to show this estimate V};(s0) (in sub-MDP M) is close to V*(sq) (in original full MDP M) for any
s0 € S, if the value of H is specified properly.

Finally, we show a lower bound for the running time of any e-optimal algorithm with access only to a
generative model in the following theorem.

Theorem 2. For any algorithm A that has access only to a generative model for a MDP M and
implements an e-optimal policy T satisfying |V (s) — V*(s)| < ¢ for all states s € S, there exist a
MDP M on which A makes at least Q(2") = Q((1/¢€)/1°90/7)) calls to the generative model.

\/

Figure 2: A tree-structured MDP M’ conducted by the algorithm A with C=3.

Theorem [2]shows the exponential dependency on e-horizon time H is inevitable in this paper’s setting.
We prove this theorem in the next section.

4 Theorem Proofs

4.1 Proof of Theorem 1

Theorem 1 states that the Algorithm .4 achieves both near-optimality and efficiency. The claim on
efficiency follows immediately from the algorithm definition. Each call to E'stimate() generates
kC calls to EstimateV and generative model G, and reduces the depth parameter i by 1. As the
depth of recursion is at most H, the running time is O((kC)H).

The claim on near-optlmallty states the return values of Estimate() are indeed good estimates of
@*. By comparing Qh(s a) (i.e., equation 5 in Fig. 1)) and Q*(s, a), we can find that there are two
sources of inaccuracy in these estimates. First, we use only a finite set of samples to approximate
the expectation E, . p,,(.). Second, we are not using V'* but rather values returned by E'stimateV,
which are themselves only estimates. We need to prove that when h increases, the overall inaccuracy
decreases. In the following, we use Lemma 1 to bound the inaccuracy from limited sampling, and
use Lemmas 2 and 3 to bound the inaccuracy from discrepancy of V* and EstimateV .

Lemma 1. Let U*(s,a) := Ry + 73 21021 V*(s;), for any state s and action a, with probability
at least 1 — 2¢="C/Viae | we have |Q*(s,a) —U*(s,a)| <\ where s; is drawn from Psa(~

Proof: We notice that E,/p_ (.[V*(s")] is the true mean of the random variable V*(s;) when s; is
drawn from Py, (-). Therefore, from Hoeffding’s Inequality, we have:

* * * 1 *
Pr{|Q" (s,a) = U™ (s,0)] £ A = Pr |7 |Eyrmp, [V ()] = 5 > V7 (50)] < A} 3
>1- 2 —A20/43%V2 L 4)
>1—2e N Vinax Q)

The last inequality holds because v < 1. This lemma quantifies the error due to finite sampling.

Lemma 2. We first denote the output of EstimateV (n,C,~, G, s) and EstimateQ(n,C,v, G, s)
to be V™ (s) and Q™ (s, a), respectively. Then, we define ., recursively from cg = Vipar, Qny1 =

Y(A + ap,). With probability at least 1 — (kC)"e’)‘QC/Vviaw, we have |Q*(s,a) — Q" (s,a)| < ay,

Proof: Based on the above definitions of V" (s) and Q™ (s, a), we have:

C
Q(5,0) = Reat v SV (s0), ©

i=1

where V" 1(s) = max,{Q" 1(s,a)} and Q°(s,a) = 0.

'This result is slightly different from the original lemma 3 in [3]] where the error probability is e C/Vimaz

instead of twice of it. Since we need to bound the absolute error from two sides, we believe missing this factor 2
is a typo in the original paper.

We first prove the following result:

Pr[|Q"(s,a) — Q"(s,a)| < €] >1—-8 = Pr[[V(s) —V"(s)| < e >1-6. @)
This is because |[V*(s) — V"(s)| = |maz,Q*(s,a) — maz,Q"(s,a)|. If mar,Q*(s,a) >
max,Q" (s, a), we let a* = argmax,Q"(s, a), then we have:

Vi(s) =V"(s)| = Q7(s,a") = Q"(s,a") + Q"(s,a") = Q"(s,a0) < e+ 0= ®)
Similarly, if maz,Q*(s,a) < mamaQ"(s, a), we let a* = argmax,Q* (s, a), and then we have:

[V*(s) = V™" (s)|=Q"(5,a") — Q" (s5,a") + Q" (5,a") — Q" (s,a) <e+0=¢)

We then prove this above lemma by induction on n. When n = 0, we have:
Pr{|Q"(5,a) = Q*(5,)| < o) = Pr{|Q"(5,0) = 0] < Vinau] = 1> 1— e > Vimar . (10)
Now, suppose the lemma holds for n = h — 1, that is Pr [|Q*(s,a) — Q"7 !(s,a)| > ap_1] <

(kC)h’le*ﬁC/Vfwr , then for n = h we have the following:

Py 1 < * 1 < * 1 < h—1
Eyp,,(y [V ()] — EZV (8:) + 52\/ (i) — EZV (s4) 1)
i=1 i=1

=1
1 & 1 &L,
< SNV (s) — = S vhe (si)> (12)
Therefore, we have:
Pr [|Q*(57 a) — Qh(s, a)| > ozh} =Pr [|Q*(57 a) — Qh(s, a)| >~v(A+ ahfl)} (13)

il R

1Q*(s,a) = Q"(s,a)l =

C
1
By p,, () [V ()] — o > o VE(si)| +
i=1

<Pr

C
* 1 *
Eonp,([V'(s)] - 52‘/ (s:)

c
1
+Pr |y (° i:ZIV si) g (si) > ’YCV}Ll:| (15)
< 2 —\2C/V2 +C- (kC)h 1 *AQC/mer (16)
(kC)h —\2 C/Vm(”‘ (17)

The first inequality comes from the following two facts: (1) If 0 < a < b,0 < ¢, then Pr[a > ¢] <
Pr[b > ¢Jand 2) Prla + b > ¢1 + ¢2] < Pr[a > ¢1 Ub > ¢2] < Prla > ¢1] + Pr[b > ¢3]. The
second inequality comes from lemma|I|and our assumption that lemma[2|holds for n = h — 1. The
last inequality holds as we can simply assume 2 < C" (k" — k;h b,

Colloary 1. For § = —, H = logv(—), C = "““” (2Hlog ’"”I + log3), we have
Pr{|Q*(s,a) = Q" (s,a)| < &) > 1 0.

From the recursive definition of «, we have:

g A 2

ag = <Z'Yl)\> +7vaax§17+’y Vinaz < 1_7~ (18)
=1
Then we verify that for the given C and H, we have (kC)? e N C Ve < 4. Specifically, we have:
2
(kC)H e >/ Vinar < § <= Hlog(kC') — <2Hlog% n log%) < logd (19)
kHV,fm kH?V jao
H 2 1 27,2
— 2Hlogk)‘\/m“z + logg < % 21)
kHV? 0 kHV2,, = kH?*V2,,
<= 2Hlog 2 + log 2 < 2 (22)
2 2

— 3l0g™ ;”m < AV;“‘”” (23)

Line 9 is obtained by replacing C'in e NCO/Vas, L1ne.1s obtained by further replacing C' in the
left hand side of hne Llneﬁholds because (15 = V’"‘“;\l) < kHV’”‘“” . You can further verify
this inequality by noticing v < 1, k > 1, H > 1, and v —. Flnally, we can see that if \ is

small enough, lme.holds because % > 3. Since A is the error measure, it should be small,

and thus we will have (kC)# ’XZC/Vmaz < 5'

The lemma shows algorithm A computes good estimates of Q*(sg, a) for all actions a. Following
we relate this result to the expected value of a stochastic policy implemented by algorithm .A.

Lemma 3. Given a stochastic policy T, if for each state s, with probability at least 1 — §, we have
Q*(s,7*(s))—Q(s,m(s)) < A, then for any state s we have V*(s)—V™(s) < (A+20Vinaz)/(1—7).

As 7 is a stochastic policy, 7(s) is a random variable. Furthermore, we have assumed the rewards are
bounded by R4, and thus |Q* (s, a)| < Vp,4, for any (s, a) pair. We have:

E[Q7(s,m(s))] = (1 = 6)(Q"(s, 7" (5)) = A) — 6Vinaa 24)
=Q(5,77(s)) = A = 0Q"(5,77(5)) + 6A — 6Vimaa (25)
> Q (57 ™ ()) A 26Vmaz (26)

We then prove the lemma following the procedures in [4]. Specifically, we define the loss:
Ly=(s) =V"(s) = V"(s) = Q" (5,7 (s)) — E[Q" (s, 7(s))] 27

Suppose state z achieves maximum loss. That is Ly~ (z) > Ly« (s) forany s € S. Leta = 7*(2)
and b ~ 7(2). From 1nequa11ty.we have

R(z,a +72Pm — X = 20Vinae < Epn(o)[R(2,0) +7 Y Pau(y)V™ ()] (28)

Y

Because V*(y) > V7 (y) for any state y, we can replace V™ (y) in the right hand size of above
inequality and get the following result:

R(2,0) = Bon(z) [R(2,0)] < A+ 26Vinaz +7Bpnn(e)[D PV ()] =7 D Pea)V (). (29)

Y

Furthermore, we have:

Ly~(2) =V7(2) =V™(2) = Q"(2,0) = Epun(»)[Q" (2, 0)] (30)
= (R(z,a) — Eyun(z) [R(<WZPZ¢1 — YEpr(z) [Z Poy(y)V" (y)}) €1y}
Yy
S A + 25Vmaz + ’YEbNW(z) Z sz y] - Z PZG (y)V*(y) (32)
+7§:1za WEMWQ)E:F% W7 (y)] (33)
Y

= A+ 20Vinaz + VBbunz) | D Pa@)V () = > Pu(y)V (34)

Yy Yy
= A+ 25Vma:c + 'YEbN-/r(z) Z sz(y) (V*(y) -V (y)) (35)

)

= A+ 26Vimae + YLy~ (y) (36)
< A+ 20Vinaz + yLv~(2) 37)

inequality [32] comes from inequality inequality 37| holds from the definition of state z that it
achieves the maximum loss. Finally, from the definition Ly~ and inequality [37] we can get:

V*(s) — V7 (s) < 2T 20V mas

<t (38)

There is no detailed proof of this inequality in the original paper. I suspect the authors know some more
advanced inequalities that will make this proof “obvious”.

Finally, we combine the above three lemmas and show the near-optimality of Algorithm .A. From
Colloary , we know that with probability 1 — §, the estimation error of Q* is at most % By
Lemma 3] this implies that such a policy 7 has the following property that from every state s,

2 26Vimaz

V*(s) = V7(s) < (T (39)
Substituting back the values of § = R,iw and A = €(1 — ~y)?/4, it follows that:
* T 4)\
Vi(s) = V7™ (s) < TEE =e. (40)

4.2 Proof of Theorem 2

Theorem 2 states that any planning algorithm with access only to a generative model, and which
implements a e-optimal policy in a general MDP, must have running time at least exponential in
the e-horizon time H. We prove this by constructing a very special MDP that requires the planning
algorithm to call the generative model 2(27) times.

Specifically, we design a MDP M using a binary tree 1" of depth H. Each node in T represents a
state in M. The actions of M are {0, 1}. When we are in state s and perform an action b, we move to
state s, deterministically, where sy, is the b-th child of s in 7. If s is a leaf node in 7', we move to
an absorbing state. We randomly choose a leaf node v in the tree and let R(v,b) = R4, for any
b€ {0,1} and R(v',b) = 0 for any state v’ # v, b € {0, 1}. Given the state s corresponding to the
root node of T', any algorithm A must perform at least (27 calls to the generative model to find
that leaf node v for computing a near optimal policy.

5 Discussion

5.1 Relation to Tabular Certainty-Equivalence

In the note [2] Section 2.3, we show an analysis of certainty-equivalence algorithm that has no
explicit dependency on the state space size |S|. However, the certainty-equivalence algorithm is a
model-based RL algorithm and requires n samples per (s, a) pair, which causes implicit dependency
on |S|. In comparison, the sparse sampling algorithm presented in this report is a value-based method
and focuses on returning the action for one single state sg. Therefore, it leverages the generative
model to obtain samples only of the state-action pairs that matter for the calculation of Q*(sg, -).
Since the number of state-action pairs that contributes to Q* (s, -) is limited and independent of |S]|,
the final algorithm has no dependency of |S|.

5.2 Relation to Monto Carlo Tree Search

Monte Carlo Tree Search (MCTS) was introduced in [1]] as a building block for the Go playing engine
CrazyStone. Later, researchers and engineers in Google DeepMind developed variants of MCTS
algorithm for building AlphaGo/Zero that outperforms professional human Go players. Here, we
compare the sparse sampling algorithm with the vanilla MCTS algorithm in [1].

The ultimate goal of MCTS is to output the most promising move/action given a game state, which is
exactly the same as the purpose of the sparse sampling algorithm in this report. Furthermore, MCTS
will also represent a game using a tree structure where each node is a game state and each edge
indicates a possible move/action. There are two main differences between MCTS and the sparse
sampling algorithm. First, the sparse sampling algorithm constructs a sparse look-ahead tree (c.f.
Fig.|2) in a breadth-first fashion. For each non-leaf node, we will expand it into exactly £C' children
nodes and the maximum expansion depth is a fixed number H. In comparison, MCTS (dynamically)
constructs the game tree in a depth-first fashion. It starts from a node that is not fully expanded and
follows a rollout policy to expand it until a terminal node (where the final reward can be calculated)
is reached. Second, the sparse sampling algorithm can obtain rewards for every state-action pair from
the generative model. On the other hand, MCTS (in its vanilla form) works in a sparse reward setting
where the reward is obtained only when the game ends. Such final reward is then backpropagated to
all intermediate states. Finally, despite those dissimilarities, these two algorithms still share the same
philosophy — using sampling to remove dependency on large state space size.

5.3 Further Improvements

There are several improvements that can help to reduce the running time in practice. First, we can
do different amounts of sampling at each level of the tree. The intuition is that the further away
we are from the root, the less influence our estimates will have on the () values at the root due to
the discounting. Second, we can change the value estimates in leaf nodes from zero (in current
algorithm) to the values returned by an approximate value function at those states. Finally, we can use

memorization in the calculation of E'stimatel” and cache estimated Vh(s) to save the running time.

6 Conclusion

In this report, we present a randomized algorithm A that achieves online planning in large MDPs.
We show detailed proofs of two main theorems, some of which are not presented in the original paper.
Finally, we discuss the implications of this algorithm and compare it with several related methods.

References

[1] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Computers and Games,
2006.

[2] N. Jiang. Notes on tabular methods, http://nanjiang.cs.illinois.edu/files/cs598/
note3.pdf, 2019.

[3] M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for near-optimal planning in large
markov decision processes. Machine Learning, 49:193-208, 1999.

[4] S.P. Singh and R. C. Yee. An upper bound on the loss from approximate optimal-value functions. Machine
Learning, 16(3):227-233, 1994.

http://nanjiang.cs.illinois.edu/files/cs598/note3.pdf
http://nanjiang.cs.illinois.edu/files/cs598/note3.pdf

	Introduction
	Problem Setting
	A Sparse Sampling Algorithm for Planning in Large MDP
	Theorem Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Discussion
	Relation to Tabular Certainty-Equivalence
	Relation to Monto Carlo Tree Search
	Further Improvements

	Conclusion

